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Abstract A new level of the theory of Raman
scattering and Raman optical activity (ROA) is identi-
fied between the general, unrestricted (GU) theory and
the far-from-resonance (FFR) theory called the near
resonance (NR) theory. In the NR theory, the Raman
tensor is not symmetric, and there is nonequivalence
between the incident and scattered circular polarization
(ICP and SCP) forms of ROA and non-zero intensity for
out-of-phase dual circular polarization (DCPII) ROA.
Several levels of theory are identified in passing from the
GU theory to the FFR theory. The NR theory provides
vibronic detail, present in the GU theory but absent
from the FFR, by assuming that the vibrational levels
of the excited electronic states are the same as those
of the ground electronic state. The NR theory obeys
time-reversal symmetry and can be expressed in a form
that is computationally tractable, thereby providing an
improved description of the frequency dependence of
Raman and ROA intensities relative to that provided
by the FFR theory.

Keywords Raman scattering · Raman optical
activity · Pre-resonance · Frequency dependence ·
Near resonance · Complete adiabatic · Nuclear velocity
dependence

1 Introduction

Raman optical activity (ROA) is a form of natural
optical activity that is distinct from the classical forms of
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optical activity, optical rotation and circular dichroism
[1–3]. All forms of natural optical activity can be defined
as the differential interaction of a chiral molecule with
right versus left circularly polarized radiation. The most
common form of ROA is vibrational ROA, although
ROA in electronic Raman scattering can in principle be
observed. Vibrational ROA is one of two forms of vibra-
tional optical activity (VOA) [3–5]. The other is infrared
or near-infrared vibrational circular dichroism, (VCD),
which is the difference in the absorption of a molecule
for left versus right circularly polarized radiation for a
vibrational transition. VCD and ROA are complemen-
tary and nonredundant forms of VOA in the same way
that infrared absorption and Raman scattering are com-
plementary forms of ordinary vibrational spectroscopy.

Raman optical activity (ROA) was originally defined
as the difference in Raman scattering intensity for right
minus left incident circularly polarized (ICP) light [1,2].
The original formulation also included the possibility
of observing ROA as the degree of circularity in the
scattered light, but no explicit method of measurement
of this form of ROA was proposed until it was mea-
sured as the intensity difference of circular polarization
states in the scattered Raman radiation and renamed
scattered circular polarization (SCP) ROA [6]. Subse-
quently, the definition and measurement of ROA was
extended to include two new forms of ROA called dual
circular polarization (DCPI and DCPII) ROA [7–9], and
then further extended to include four forms of linear
polarization (LP) ROA [10]. The four forms of CP ROA
have been described in a complete theoretical formula-
tion by means of two independent derivations [11], and
all forms and experimental setups of CP and LP ROA
have been described in a review starting from a single
master equation [12].
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There are various theoretical expressions for ROA
scattering tensors depending on the polarization mod-
ulation scheme, the scattering geometry and the prox-
imity of the exciting laser radiation to resonance with
excited electronic states in the molecule. A general unre-
stricted (GU) theory of ROA can be written from which
all special cases can be derived [12]. The two princi-
pal resonance limits for the GU theory of ROA are
the far-from-resonance (FFR) theory, the original form
of the theory of ROA, and the single-electronic-state
(SES) limit, for the case of strong resonance with a single
excited electronic state [13]. In the case of FFR ROA, ab
initio calculations have been carried out for direct com-
parison to experiment for two distinct cases, the zero
frequency, static approximation for the incident radia-
tion [14] and also, using time-dependent quantum per-
turbation methods, the FFR approximation with explicit
dependence on the frequency of the incident radiation
[15]. The SES approximation is so simple that the com-
plete SES-ROA spectrum can be predicted from the
parent resonance Raman spectrum and the electronic
circular dichroism spectrum of the resonant electronic
state [13].

The focus of this paper is on the transition from the
GU theory of ROA to the FFR theory. The vibronic cou-
pling formalism is introduced into the GU theory as a
first step to separate the electronic and nuclear motions
of the molecule. Then the approximations needed to
reduce the GU theory to the standard FFR theory are
invoked. The relative importance of these approxima-
tions is assessed and an intermediate level of the theory
is identified that is not as severe as the FFR approx-
imation. The new level of theory is called the near-
resonance (NR) theory which becomes important as
the FFR theory breaks down but before the regime
of strong resonance with individual excited electron-
ics state is reached. It is shown that the breakdown of
the FFR approximation occurs only when excited-state
vibronic detail becomes important. Symptoms of this
breakdown, which have been observed experimentally
in ROA experiments, are the loss of equivalence of ICP
and SCP forms of ROA and the appearance of DCPII
ROA which vanishes in the FFR approximation [9,16].

The NR theory rests on the assumption that the vibra-
tional structures of the most important excited electronic
states are the same as those of the ground electronic
state. This new level of Raman and ROA theory can
be reduced to a comparatively simple form and it is
shown that it provides an improved description of the
frequency dependence of Raman and ROA intensities
in the regime between the FFR approximation and the
GU theory. Rather than having no vibronic detail in
the energy denominators of the Raman and ROA

tensor expressions, the NR theory of Raman and ROA
includes vibronic detail under the assumption that, to
a reasonable approximation, the vibrational structure
of the contributing excited electronic states is the same
as that of the ground electronic state. While this is not
true in general, it is a better assumption than simply
removing all vibronic detail and ignoring the difference
in frequency between the incident and scattered radi-
ation. As a result, in addition to agreeing with experi-
ment for the appearance of non-zero DCPII ROA and
differences between ICP and SCP ROA for molecules
that are not close to strong resonance by ten or more
thousands of wavenumbers, the NR theory provides a
more accurate description of the frequency dependence
of both Raman and ROA spectra as resonance with the
excited states of the molecule is approached. Finally, it is
shown that the NR theory reduces to a simple form that
is straightforward to calculate at the ab initio level given
a program that includes the frequency dependence of
Raman and ROA on the incident laser radiation.

2 Polarized light scattering

The intensity of light scattering for any experiment can
be expressed in terms of the general scattering tensor
ãαβ and the polarization vectors for the incident and
scattered radiation, ẽi

α and ẽd
α , respectively, and is given

by

I
(

ẽd, ẽi
)

= 90K
〈∣∣∣ẽd∗

α ãαβ ẽi
β

∣∣∣
2
〉

(1)

In this equation, K is a constant given below that
depends among other things on the intensity of the inci-
dent laser radiation. The angular brackets designate an
average over all angles of orientation of the molecule
to the laboratory frame of reference. This is needed for
liquid, solution or gaseous samples where there are no
unique molecular axes relative to the laboratory axes.
The polarization vectors have one Greek subscript and
the scattering tensor has two. For repeated Greek sub-
scripts, summation over the Cartesian directions x, y and
z is implied. Hence, Eq. (1) has nine terms within the
vertical brackets, and these brackets designate the abso-
lute value of the complex quantities within the brackets.
The tilde above a quantity, such as a polarization vector
or a scattering tensor, indicates that this quantity can be
complex. The star superscript for the polarization vector
of the scattered light designates complex conjugation.
The constant K is given by

K = 1
90

(
ω2

sµ0Ẽ(0)

4πR

)2

(2)
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where ωs is the angular frequency of the scattered light,
µ0 is the magnetic permeability of free space, Ẽ(0) is the
effective electric field strength of the incident laser radi-
ation of angular frequencyω0, and R is the distance from
the scattering to the detector. The general scattering ten-
sor is given through its lowest-order tensors as

ãαβ = α̃αβ + 1
c

[
εγ δβni

δG̃αγ + εγ δαnd
δ G̃γβ

+ i
3

(
ω0ni

γ Ãα,γβ − ωsnd
γ

˜Aβ,γα

)]
(3)

where the first tensor is simply the polarizability tensor
that is responsible for ordinary Raman (and Rayleigh)
scattering. The four tensors in square brackets are the
optical activity tensors or in the case of ROA, the ROA
tensors. The first two are magnetic dipole-electric dipole
ROA tensors and the second two are electric quadru-
pole-electric dipole ROA tensors. The vectors ñi

α and
ñd
α are the propagation vectors for the incident and

scattered light, respectively, and εαβγ is the unit anti-
symmetric tensor that is +1 for even permutations of
the order x,y,z, -1 for odd permutation of this order, and
zero if any two Cartesian directions are the same. We
note that three additional terms may be added to Eq. (3)
to account for electric field induced birefringence and
the effects of finite cone of collection of the Raman scat-
tering and ROA [3].

The Raman polarizability tensor is given by

α̃αβ = 1
h̄

∑
j �=m,n

[〈
m
∣∣µ̂α

∣∣j〉〈j∣∣µ̂β
∣∣n〉

ωjn − ω0 − i�j
+
〈
m
∣∣µ̂β

∣∣j〉〈j∣∣µ̂α
∣∣n〉

ωjm + ω0 + i�j

]
(4)

where h̄ is Planck’s constant divided by 2π , and the sum-
mation is over all excited electronic states, j, except the
initial and final states, n and m, respectively. The states
n and m differ by a vibrational quantum of energy. The
denominators contain frequency terms, and ωjn is the
angular frequency difference between the states j and n.
The terms i�j are imaginary terms proportional to the
width of the electronic state j, and hence inversely pro-
portional to its lifetime. We have followed the opposite-
sign convention for the i�j terms recognized recently to
be the correct one based on a number of physical and
phenomenological arguments [17–19]. The first term in
Eq. (4) is called the resonance term since difference
between the jn-transition frequency and the laser fre-
quency vanishes at the resonance condition, and the sec-
ond term is the non-resonance term. The quantities in
angular brackets are quantum mechanical matrix ele-
ments with electric dipole moment operators µ̂α given
by

µ̂α =
∑

k

ekrkα (5)

which is simply the summation over the charge and
position in the αth direction of all particles, k, in the
molecule, electrons and nuclei, although in the case of
Raman scattering or ROA the nuclei make no contribu-
tions.

The matrix element in Eq. (4) involving the opera-
tor µ̂β describes the interaction of the molecule with
the incident radiation while the matrix elements with
the operator µ̂α describes the interaction of the mole-
cule with the scattered radiation. The matrix element
products in each term can be read from right to left in a
time-ordered sense, and hence the resonance term
describes the molecule interacting first with a laser pho-
ton and subsequently creating a scattered photon,
whereas the non-resonance terms reverses the time-
order of the those two events.

The four ROA tensors differ from the Raman polariz-
ability tensor by substitution of a higher-order operator
for an electric-dipole operator in Eq. (4). The two oper-
ators needed for ROA are the magnetic-dipole moment
operator and the electric-quadruple moment operator
given respectively by

m̂α = 1
2

∑
k

ek

mk
εαβγ rkβpkγ (6)

	̂αβ = 1
2

∑
k

ek

(
3rkαrkβ − r2

kδαβ

)
(7)

The resulting ROA tensors are given by

G̃αβ = 1
h̄

∑
j �=m,n

⎡
⎢⎣
〈
m
∣∣µ̂α

∣∣j〉
〈
j
∣∣∣
mβ

∣∣∣n
〉

ωjn − ω0 − i�j
+
〈
m
∣∣∣
mβ

∣∣∣j
〉〈

j
∣∣µ̂α

∣∣n〉

ωjm + ω0 + i�j

⎤
⎥⎦ (8)

G̃αβ = 1
h̄

∑
j �=m,n

⎡
⎢⎣

〈
m
∣∣∣
mα

∣∣∣j
〉〈

j
∣∣µ̂β

∣∣n〉

ωjn − ω0 − i�j
+
〈
m
∣∣µ̂β

∣∣j〉
〈
j
∣∣∣
mα

∣∣∣n
〉

ωjm + ω0 + i�j

⎤
⎥⎦ (9)

Ãα,βγ = 1
h̄

∑
j �=m,n

⎡
⎢⎢⎣

〈
m
∣∣µ̂α

∣∣j〉
〈
j

∣∣∣∣



	βγ

∣∣∣∣n
〉

ωjn − ω0 − i�j
+

〈
m

∣∣∣∣



	βγ

∣∣∣∣j
〉〈

j
∣∣µ̂α

∣∣n〉

ωjm + ω0 + i�j

⎤
⎥⎥⎦ (10)

˜Aα,βγ = 1
h̄

∑
j �=m,n

⎡
⎢⎢⎣

〈
m

∣∣∣∣



	βγ

∣∣∣∣j
〉〈

j
∣∣∣
µα

∣∣∣n
〉

ωjn − ω0 − i�j
+

〈
m
∣∣∣
µα

∣∣∣j
〉〈

j

∣∣∣∣



	βγ

∣∣∣∣n
〉

ωjm + ω0 + i�j

⎤
⎥⎥⎦ (11)

The expressions given above provide the theoretical
formalism for the description of all forms of polarized
Raman scattering through first-order in the
magnetic-dipole and electric-quadrupole interaction of
light with matter. This is sufficient to describe the various
forms of ROA within the assumptions given above.
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3 ROA observables

If the polarization states of the incident laser radia-
tion and the scattered radiation are specified, one can
construct theoretical expressions for the various ROA
observables that can be measured. Considering here
only circular polarization ROA, expressions can be
obtained from pairs of intensity expressions that dif-
fer only in the change in the circular polarization state
of one or both the light beams from right circular to left
circular, or vice versa.

The fundamental ROA observables are classified by
polarization and scattering angle, ξ .

There are four different forms of CP ROA given by

ICP ROA: �Iα(ξ) = IR
α (ξ)− IL

α (ξ) (12)

SCP ROA: �Iα(ξ) = IαR(ξ)− IαL(ξ) (13)

DCPIROA: �II(ξ) = IR
R(ξ)− IL

L(ξ) (14)

DCPIIROA: �III(ξ) = IR
L(ξ)− IL

R(ξ) (15)

In the case of ICP and SCP ROA, the polarization state
α is any fixed linear value or the unpolarized state. The
standard choices are unpolarized, linearly polarized par-
allel to the scattering plane (depolarized) or linearly
polarized perpendicular to the scattering plane (polar-
ized). The common scattering angles are 90◦ (right-
angle scattering) 180◦ (backscattering), and 0◦ (forward
scattering).

4 General unrestricted theory of ROA

The GU theory of ROA embraces all possible polari-
zation experiments, scattering geometries and degrees
of resonance Raman intensity enhancement. Because
of this generality, the level of the theory is too com-
plex to describe in detail in the present context. Instead,
we provide a verbal description of the formalism and
refer the interested reader to a comprehensive review by
Nafie and Che, 1994, of the theory and measurement of
ROA [12].

ROA and Raman intensity are proportional to the
square of a tensor quantity, as expressed in Eq. (1).
For Raman scattering, only the square of the polariz-
ability is needed, whereas ROA intensity arises from
the products of the polarizability and the ROA tensors.
The ROA tensors are approximately three orders of
magnitude smaller than the polarizability, and hence an
ROA spectrum is approximately three orders of magni-
tude smaller than its parent Raman spectrum. As noted
above, the Greek subscripts of the tensors refer to the
molecular axis system. However, for both Raman and
ROA, linear combinations of products of tensors can be

found that do not vary with the choice of the molecular
coordinate frame. Such combinations are called
invariants. All Raman intensities from samples of ran-
domly oriented molecules can be expressed in terms of
only three invariants, called the isotropic Raman invari-
ant and the symmetric and antisymmetric anisotropic
Raman invariants given by

α2 = 1
9

Re
[
(α̃αα)

S(α̃ββ
)S∗]

(16)

βS(α̃)
2 = 1

2
Re

[
3
(
α̃αβ

)S(
α̃αβ

)S∗ − (α̃αα)
S(α̃ββ

)S∗]
(17)

βA(α̃)
2 = 1

2
Re

[
3
(
α̃αβ

)A(
α̃αβ

)A∗]
(18)

where the symmetric and anti-symmetric forms of the
tensors here and below are given by

(
Tαβ

)S = 1
2

[(
Tαβ

)+ (
Tβα

)]
(19)

(
Tαβ

)A = 1
2

[(
Tαβ

)− (
Tβα

)]
(20)

For CP ROA there are ten invariants, five associated

with the Roman tensors,
(
αG,βS

(
G̃
)2

,βA

(
G̃
)2

,βS

(
Ã
)2

and βA

(
Ã
)2
)

and five with the script tensors, (αG ,

βS

(
G̃
)2

,βA

(
G̃
)2

,βS

( ˜A
)2

and βA

( ˜A
)2
)

. The Roman

ROA tensors are given by

αG = 1
9

Im

[
(α̃αα)

S
(

G̃ββ

)S∗]
(21)

βS

(
G̃
)2 = 1

2
Im

[
3
(
α̃αβ

)S
(

G̃αβ

)S∗
−(α̃αα)S

(
G̃ββ

)S∗]

(22)

βA

(
G̃
)2 = 1

2
Im

[
3
(
α̃αβ

)A
(

G̃αβ

)A∗]
(23)

βS

(
Ã
)2 = 1

2
ω0 Im

{
i
(
α̃αβ

)S
[
εαγ δ

(
Ãγ ,δβ

)]S∗}
(24)

βA

(
Ã
)2 = 1

2
ω0 Im

{
i
(
α̃αβ

)A
{[
εαγ δ

(
Ãγ ,δβ

)]A∗

+
[
εαβγ

(
Ãδ,γ δ

)]A∗}}
(25)

The corresponding five script tensor invariants are the
same as those for the Roman tensors, except that ωs

replaces ω0 in the expressions for the electric quadru-
pole optical activity invariants. . All of the different CP
ROA experiments can be expressed in terms of these
ten invariants. The ROA intensity for any experiment
is expressed as a linear combination of some or all
of the ten ROA invariants. Although sets of experi-
ments can be devised to isolate all three ordinary Raman
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invariants, only six distinct combinations of ROA
invariants can be isolated [12].

From an experimental point of view, the most impor-
tant ROA experiments are unpolarized backscattering
ICP and SCP, and DCPI. The expressions for the cir-
cular intensity difference (ROA) and circular intensity
sum (Raman) for these experiments are:
ICP (180◦):

IR
u
(
180◦)−IL

u
(
180◦) = 8K

c

[
45αG+7βS

(
G̃
)2

+ 5βA

(
G̃
)2+βS

(
Ã
)2 −βA

(
Ã
)2

+ 45αG −5βS

(
G̃
)2+5βA

(
G̃
)2

+ 3βS

( ˜A
)2 − βA

( ˜A
)2
]

(26)

IR
u
(
180◦)+IL

u
(
180◦) = 4K

[
45α2+7βS(α̃)

2+5βA(α̃)
2
]

(27)

SCP (180◦):

Iu
L
(
180◦)− Iu

R
(
180◦) = 8K

c

[
− 45αG + 5βS

(
G̃
)2

− 5βA

(
G̃
)2 + 3βS

(
Ã
)2 + βA

(
Ã
)2

− 45αG − 7βS

(
G̃
)2 − 5βA

(
G̃
)2

+βS

( ˜A
)2 + βA

( ˜A
)2
]

(28)

Iu
R
(
180◦)+ Iu

L
(
180◦) = 4K

[
45α2 + 7βS(α̃)

2 + 5βA(α̃)
2
]

(29)

DCPI(180◦) :

IR
R

(
180◦)− IL

R

(
180◦) = 8K

c

[
6βS

(
G̃
)2 + 2βS

(
Ã
)2

− 6βS

(
G̃
)2 + 2βS

( ˜A
)2
]

(30)

IR
R

(
180◦)+ IL

L

(
180◦) = 4K

[
6βS(α̃)

2
]

(31)

Both ICP (180◦) and SCP (180◦) Raman and ROA
experiments use all available invariants and the ROA
are different from one another. By contrast, the extra
circular polarization discrimination gives DCPI(180◦)
Raman and ROA a remarkable level of simplicity.
Only the symmetric anisotropic invariants contribute.
DCPII(180◦) intensities are obtained by subtracting
intensities for DCPI(180◦) from those for ICP (180◦)
or SCP (180◦), although in the case of SCP (180◦)ROA,
the DCPII(180◦)ROA is obtained with the opposite sign
from the definition given in Eq. (15).

5 Far-from-resonance theory of ROA

The transition from the general theory to the FFR
theory starts with invoking the adiabatic approximation
to separate the molecular wavefunction into the prod-
uct of electronic and vibrational parts. Without loss of
significant generality, we also restrict the Raman vibra-
tional transition to be a Stokes transition between the
zeroth and first vibrational levels of normal mode a of
the ground electronic state. With these changes to the
polarizability in Eq. (4), one obtains
(
α̃αβ

)a
g1,g0

= 1
h̄

∑
ev

⎡
⎣
〈
φa

g1

∣∣〈g ∣∣µ̂α |e〉 |φev

〉〈
φev

∣∣∣
〈
e
∣∣∣µ̂β

∣∣∣g〉
∣∣∣φa

g0

〉

ωev,g0 − ω0 − i�e

+
〈
φa

g1

∣∣〈g ∣∣µ̂β |e〉 |φev

〉〈
φev

∣∣∣
〈
e
∣∣∣µ̂α

∣∣∣g〉
∣∣∣φa

g0

〉

ωev,g1 + ω0 + i�e

⎤
⎦

(32)

To reduce this expression to the FFR approximation sev-
eral steps typically occur. The imaginary damping terms
are dropped as small compared to the real frequency
terms and all excited-state vibronic detail is dropped
from the energy denominators. These two types of omis-
sion are each on the order of 1,000 cm−1 and can be con-
sidered small relative to the resonance mismatch, which
can be on the order of tens of thousands of wavenum-
bers. An alternative form of the denominator of the non-
resonance termωev,g1+ω0+i�e isωev,g0+ωs+i�e where
is ωs the frequency of the Raman scattered light, and
where elimination of vibrational detail in the denom-
inators of Eq. (32) also eliminates the discrimination
between the incident and scattered radiation frequen-
cies. Without vibrational detail in the denominators, the
sum over the excited state vibrational wavefunctions
can be carried out to closure leaving the initial and final
vibrational sublevels of the ground electronic state as
the only vibrational wavefunctions. These can be sepa-
rated from the polarizability to give

(
α̃αβ

)a
g1,g0 =

〈
φa

g1

∣∣∣ 1
h̄

∑
e

[〈
g
∣∣µ̂a

∣∣e〉〈e∣∣µ̂β
∣∣g〉

ω0
eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉〈e∣∣µ̂a
∣∣g〉

ω0
eg + ω0

] ∣∣∣φa
g0

〉
(33)

From the Hermitian properties of the position dipole
moment operator we can write
〈
g
∣∣µ̂β

∣∣e〉〈e∣∣µ̂a
∣∣g〉 = 〈

g
∣∣µ̂a

∣∣e〉∗〈e∣∣µ̂β
∣∣g〉∗

= 〈
g
∣∣µ̂a

∣∣e〉〈e∣∣µ̂β
∣∣g〉 (34)
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and Eq. (33) can then be combined over a common
denominator as [3]
(
α̃αβ

)a
g1,g0 =

〈
φa

g1

∣∣∣ ααβ
∣∣ φa

g0

〉

=
〈
φa

g1

∣∣∣ 2
h̄

Re
∑
e �=g

ω0
eg
〈
g
∣∣µ̂a

∣∣e〉〈e∣∣µ̂β
∣∣g〉

(
ω0

eg

)2 − ω2
0

∣∣∣φa
g0

〉

(35)

Invoking the same approximations for the ROA tensors
the following expressions are obtained
(

G′
αβ

)a

g0,g1
=
〈
φa

g1

∣∣∣ G′
αβ

∣∣∣ φa
g0

〉

= −
〈
φa

g1

∣∣∣ 2
h̄

Im
∑
e �=g

ω0
〈
g
∣∣µ̂a

∣∣e〉〈e∣∣m̂β

∣∣g〉
(
ω0

eg

)2 − ω2
0

∣∣∣φa
g0

〉

(36)(
G ′
αβ

)a

g0,g1
=
〈
φa

g1

∣∣∣ G ′
αβ

∣∣∣ φa
g0

〉

= −
〈
φa

g1

∣∣∣ 2
h̄

Im
∑
e �=g

ω0
〈
g
∣∣m̂a

∣∣e〉〈e∣∣µ̂β
∣∣g〉

(
ω0

eg

)2 − ω2
0

∣∣∣φa
g0

〉

(37)
(
Aα,βγ

)a
g0,g1 =

〈
φa

g1

∣∣∣ Aα,βγ
∣∣ φa

g0

〉

=
〈
φa

g1

∣∣∣ 2
h̄

Re
∑
e �=g

ω0
eg
〈
g
∣∣µ̂a

∣∣e〉
〈
e
∣∣∣	̂βγ

∣∣∣g
〉

(
ω0

eg

)2 − ω2
0

∣∣∣φa
g0

〉

(38)
(
Aα,βγ

)a
g0,g1 =

〈
φa

g1

∣∣∣ Aα,βγ
∣∣ φa

g0

〉

=
〈
φa

g1

∣∣∣ 2
h̄

Re
∑
e �=g

ω0
eg

〈
g
∣∣∣	̂βγ

∣∣∣e
〉〈

e
∣∣µ̂α

∣∣g〉
(
ω0

eg

)2 − ω2
0

∣∣∣φa
g0

〉

(39)

where, we have used the Hermitian properties of the
imaginary magnetic-dipole and the real electric-quad-
rupole operators,
〈
g
∣∣∣
mβ

∣∣∣e
〉〈

e
∣∣µ̂α

∣∣g〉 = 〈
g
∣∣µ̂α

∣∣e〉∗
〈
e
∣∣∣
mβ

∣∣∣g
〉∗

= −〈g∣∣µ̂a
∣∣e〉
〈
e
∣∣∣
mβ

∣∣∣g
〉

(40)
〈
g
∣∣∣	̂βγ

∣∣∣e
〉〈

e
∣∣µ̂α

∣∣g〉 = 〈
g
∣∣µ̂α

∣∣e〉∗
〈
e
∣∣∣	̂βγ

∣∣∣g
〉∗

= 〈
g
∣∣µ̂a

∣∣e〉
〈
e
∣∣∣	̂βγ

∣∣∣g
〉

(41)

in the expressions for the ROA tensors analogous to
Eq. (33). The primed and unprimed tensors arise from
the following definition of the complex tensor.

T̃ = T − iT
′

(42)

Finally, we form the symmetric and anti-symmetric com-
binations of these tensors. The Raman polarizability in

Eq. (33) with Eq. (34) is symmetric, and hence

[(
ααβ

)a
g1,g0

]S = 1
2

[(
ααβ

)a
g1,g0 + (

αβα
)a

g1,g0

]
(43)

[(
ααβ

)a
g1,g0

]A = 1
2

[(
ααβ

)a
g1,g0 − (

αβα
)a

g1,g0

]
= 0 (44)

As a result, the anti-symmetric Raman and ROA
invariants in Eqs. (18), (23) and (25) vanish. We now
need only consider the symmetric combinations of the
ROA tensors, and using the relations in Eqs. (40) and
(41), we obtain

[(
G

′
αβ

)a

g1,g0

]S

= 1
2

[(
G

′
αβ

)a

g1,g0
+
(

G
′
βα

)a

g1,g0

]

= −
[(

G
′
αβ

)a

g1,g0

]S

(45)

[
εαγ δ

(
Aγ ,δβ

)a
g1,g0

]S = 1
2

[
εαγ δ

(
Aγ ,δβ

)a
g1,g0

+εβγ δ
(
Aγ ,δα

)a
g1,g0

]

=
[
εαγ δ

(
Aγ ,δβ

)a
g1,g0

]S
(46)

From the expressions above, the theory of ROA sim-
plifies dramatically. In particular, all five anti-symmetric
Raman and ROA invariants vanish as the result of
Eq. (44).

βA(α̃)
2,βA

(
G̃
)2

,βA

(
Ã
)2

,βA

(
G̃
)2

,βA

( ˜A
)2 = 0 (47)

And there is no need to use the subscript for symmet-
ric and anti-symmetric tensors combinations as for the
polarizability invariant

[
βS(α)

2
]a

g1,g0
=
[
β(α)2

]a

g1,g0
(48)

Further, from Eqs. (45) and (46), the six symmetric ROA
invariants reduce to three

[αG]a
g1,g0 = −[αG ]a

g1,g0 = [
αG′]a

g1,g0 (49)
[
βS

(
G̃
)2
]a

g1,g0
= −

[
βS

(
G̃
)2
]a

g1,g0
=
[
β
(
G′)2

]a

g1,g0

(50)
[
βS

(
Ã
)2
]a

g1,g0
=
[
βS

( ˜A
)2
]a

g1,g0
=
[
β(A)2

]a

g1,g0
(51)
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The equations for the two Raman invariants and three
ROA invariants are
[
α2
]a

g1,g0
= 1

9
(ααα)

a
g1,g0

(
αββ

)a
g1,g0 (52)

[
β(α)2

]a

g1,g0
= 1

2

[
3
(
ααβ

)a
g1,g0

(
ααβ

)a
g1,g0

− (ααα)
a
g1,g0

(
αββ

)a
g1,g0

]
(53)

[
αG′]a

g1,g0 = 1
9
(ααα)

a
g1,g0

(
G′
ββ

)a

g1,g0
(54)

[
β
(
G′)2

]a

g1,g0
= 1

2

[
3
(
ααβ

)a
g1,g0

(
G′
αβ

)a

g1,g0

− (ααα)
a
g1,g0

(
G′
ββ

)a

g1,g0

]
(55)

[
β(A)2

]a

g1,g0
= 1

2
ω0
(
ααβ

)a
g1,g0εαγ δ

(
Aγ ,δβ

)a
g1,g0 (56)

and the FFR polarizability and optical activity tensors
are given by

ααβ = 2
h̄

∑
e �=g

ω0
eg(

ω0
eg

)2 − ω2
0

Re
[〈

g
∣∣µ̂α

∣∣e〉〈e∣∣µ̂β
∣∣g〉] (57)

G′
αβ = −2

h̄

∑
e �=g

ω0(
ω0

eg

)2 − ω2
0

Im
[〈

g
∣∣µ̂α

∣∣e〉〈e∣∣m̂β

∣∣g〉] (58)

Aα,βγ = 2
h̄

∑
e �=g

ω0
eg(

ω0
eg

)2 − ω2
0

Re
[〈

g
∣∣µ̂α

∣∣e〉
〈
e
∣∣∣	̂βγ

∣∣∣g
〉]

(59)

At this level of approximation the difference between
ICP and SCP ROA vanishes, as does differences between
ICP/SCP ROA and DCPI ROA. The analogs of Eqs. (26)
through (32) are given by:
ICP(180◦) = SCP(180◦):

IR
u
(
180◦)−IL

u
(
180◦)= 8K

c

{
12
[
β
(
G′)2

]a

g1,g0

+ 4
[
β(A)2

]a

g1,g0

}
(60)

IR
u
(
180◦)+IL

u
(
180◦) = 4K

{
45
[
α2
]a

g1,g0

+ 7
[
β(α)2

]a

g1,g0

}
(61)

DCPI (180◦):

IR
R

(
180◦)− IL

R

(
180◦) = 8K

c

{
12
[
β
(
G′)2

]a

g1,g0

+ 4
[
β(A)2

]a

g1,g0

}
(62)

IR
R

(
180◦)+ IL

R

(
180◦) = 4K

{
6
[
β(α)2

]a

g1,g0

}
(63)

In order to evaluate the tensor invariants in Eqs.
(52)–(56) for the vibrational transition from g0 to g1
in harmonic approximation, derivatives of the tensors
with respect to normal coordinates are needed. We use
the following notation for this purpose
[
α2
]a

g1,g0
= 1

9

〈
φa

g1|ααα|φa
g0

〉〈
φa

g1

∣∣αββ
∣∣φa

g0

〉
(64)

〈
φa

g1|ααα|φa
g0

〉
=
(
∂ααα

∂Qa

)

0

〈
φa

g1|Qa|φa
g0

〉
+ ... (65)

(
∂ααβ

∂Qa

)

0
= 2

h̄

∑
e �=g

ω0
eg(

ω0
eg

)
− ω2

0

× Re

[(
∂
〈
g
∣∣µ̂α

∣∣e〉〈e∣∣µ̂β
∣∣g〉

∂Qa

)

0

]
(66)

(
∂
〈
g
∣∣µ̂α

∣∣e〉〈e∣∣µ̂β
∣∣g〉

∂Qa

)

0

= 〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣µ̂β

∣∣g〉

+〈g∣∣µ̂α
∣∣e〉0

〈
e
∣∣µ̂β

∣∣g〉Qa
0 (67)

〈
g
∣∣µ̂α

∣∣e〉Qa
0 =

(
∂
〈
g
∣∣µ̂α

∣∣e〉

∂Qa

)

0

=
〈(
∂ψg

∂Qa

)

0

∣∣µ̂α
∣∣ψe,0

〉

+ 〈
ψg,0

∣∣ µ̂α
∣∣
(
∂ψe

∂Qa

)

0

〉
(68)

Using this notation at the level of the harmonic approx-
imation, the Raman polarizability tensor in the FFR
approximation in Eq. (33) is given by

(
α̃αβ

)Qa
g1,g0 = 1

h̄

∑
e

[〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣µ̂β

∣∣g〉0
ω0

eg − ω0

+
〈
e
∣∣µ̂α

∣∣g〉0
〈
g
∣∣µ̂β

∣∣e〉Qa
0

ω0
eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉Qa
0

〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg + ω0

+
〈
e
∣∣µ̂β

∣∣g〉0
〈
g
∣∣µ̂α

∣∣e〉Qa
0

ω0
eg + ω0

]〈
φa

g1|Qα|φa
g0

〉
(69)

6 Near resonance theory of Raman scattering

Starting again from the GU theory, we rewrite Eq. (32)
for the Raman polarizability for a Stokes transition from
g0 to g1 in vibrational mode a with the vibronic wave-
functions written as product wavefunctions.

(
α̃αβ

)a
g1,g0 = 1

h̄

∑
ev

⎡
⎣
〈
φa

g1

∣∣〈g∣∣µ̂α
∣∣e〉 |φev〉

∣∣∣〈e∣∣µ̂β
∣∣g〉

∣∣∣φa
g0

〉

ωev,g0 − ω0

+
〈
φa

g1

∣∣〈g ∣∣µ̂β
∣∣ e
〉 |φev〉

〈
φev|

〈
e
∣∣µ̂α

∣∣ g
〉 ∣∣∣φa

g0

〉

ωev,g0 + ω0 − ωa

(70)
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where we have used the relation that ωev,g1 + ω0 =
ωev,g0 +ω0 −ωa and ωa is the frequency of the αth vibra-
tional mode. We have also dropped the imaginary terms
since the resonance energy denominator is not expected
to approach zero in the NR regime. The approximation
made to reach the FFR theory is to replace ωev,g0 by ω0

eg
and to ignore ωa in the non-resonance term.

The NR Raman theory begins with the assumption
that the excited state vibrational wavefunctions can be
written as equivalent to a corresponding ground elec-
tronic state vibrational wavefunction for each normal
mode a as |φev〉 =

∣∣∣φa
gv

〉
. Using this relation with the

notation established in Eqs. (64)–(68) for the nuclear
position dependence of the electronic matrix elements
to first order in the nuclear normal coordinate Qa yields

(
α̃αβ

)Qa
g1,g0 = 1

h̄

∑
ev

⎡
⎣
〈
φa

g1

∣∣∣〈g∣∣µ̂α
∣∣e〉Qa

0 Qa

∣∣∣φa
gv

〉 〈
φa

gv
∣∣〈e∣∣µ̂β

∣∣g〉0
∣∣φa

g0

〉

ωev,g0 − ω0

+
〈
φa

g1

∣∣∣〈g ∣∣µ̂α
∣∣ e
〉
0

∣∣∣φa
gv

〉 〈
φa

gv

∣∣∣〈e ∣∣µ̂β
∣∣ g
〉Qa
0 Qa

∣∣∣φa
g0

〉

ωev,g0 − ω0

+
〈
φa

g1

∣∣∣〈g∣∣µ̂β
∣∣e〉Qa

0 Qa

∣∣∣φa
gv

〉 〈
φa

gv

∣∣∣ 〈e∣∣µ̂α
∣∣g〉0

∣∣∣φa
g0

〉

ωev,g0 + ω0 − ωa

+
〈
φa

g1

∣∣∣〈g∣∣µ̂β
∣∣e〉0

∣∣∣φa
gv

〉 〈
φa

gv

∣∣∣〈e∣∣µ̂α
∣∣g〉Qa

0 Qa

∣∣∣φa
g0

〉

ωev,g0 + ω0 − ωa

⎤
⎦

(71)

The sum over the vibrational wavefunction φa
gv can be

carried out where, assuming harmonic oscillator selec-
tion rules, only the functions φa

g0 or φa
g1 contribute to the

sum depending on the term being evaluated. The value
of ν affects the energy denominator through ωev,g0 since
ωe0,g0 = ω0

eg and ωe1,g0 = ω0
eg + ωa. Carrying out the

sum over ν, evaluating the energy denominators, and
rearranging the terms yields

(
α̃αβ

)Qa
g1,g0 = 1

h̄

∑
e �=g

[(〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣µ̂β

∣∣g〉0
ω0

eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉Qa
0

〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg + ω0 − ωa

)

×
〈
φa

g1 |Qa|φa
g0

〉 〈
φa

g0

∣∣∣φa
g0

〉

+
(〈

g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Qa
0

ω0
eg + ωa − ω0

+
〈
g
∣∣µ̂β

∣∣e〉0
〈
e
∣∣µ̂α

∣∣g〉Qa
0

ω0
eg + ω0

)

×
〈
φa

g1

∣∣∣ φa
g1

〉 〈
φa

g1 |Qa

∣∣∣φa
g0

〉 ]
(72)

Using the normalization of the vibrational wavefunc-
tions, one obtains

(
α̃αβ

)Qa
g1,g0 = 1

h̄

∑
e �=g

(〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣µ̂β

∣∣g〉0
ω0

eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉0
〈
e
∣∣µ̂α

∣∣g〉Qa
0

ω0
eg + ω0

)

+
(〈

g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Qa
0

ω0
eg − ωs

+
〈
g
∣∣µ̂β

∣∣e〉Qa
0

〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg + ωs

)

×
〈
φa

g1 |Qa

∣∣∣φa
g0

〉
(73)

where the Stokes Raman scattered frequency is given
by ωs = ω0 − ωa . The FFR approximation for this
equation, given in Eq. (69), is obtained from Eq. (73)
by eliminating the vibrational frequency dependence
from the denominator which now can be done sim-
ply by the approximation that ωs = ω0. Equation (73)
takes into account that pre-resonance or resonance in
Raman scattering is not just resonance with the inci-
dent laser radiation, but equally, by symmetry, with the
scattered radiation. The pre-resonance frequency depen-
dence correlates the frequency of the photon repre-
sented by the unperturbed electronic matrix element.
In the first two terms, both resonance and non-reso-
nance terms, this matrix element is the matrix element
for the operator µ̂β associated with the incident radia-
tion and here the photon frequency dependence is that
of the incident radiation. For the second pair of terms,
the unperturbed matrix element is the matrix element
associated with µ̂α for the scattered radiation, and in
these terms the pre-resonance frequency dependence
follows the scattered radiation frequency which varies
in value across the Raman spectrum.

Using relationships of the form analogous to Eq. (34),
we can write
〈
g
∣∣µ̂β

∣∣e〉Qa∗
0

〈
e
∣∣µ̂α

∣∣g〉∗0 = 〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Qa
0 (74)

and the first and second terms and the third and fourth
terms in Eq. (73) can be combined over a common
denominator to give

(
α̃αβ

)Qa
g1,g0 = 2

h̄

∑
e �=g

⎡
⎢⎣

ω0
eg(

ω0
eg

)2 − ω2
0

Re
[〈

g
∣∣µ̂α

∣∣e〉Qa
0
〈
e
∣∣µ̂β

∣∣g〉0
]

ω0
eg(

ω0
eg

)2 − ω2
s

Re
[〈

g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Qa
0

]
⎤
⎥⎦

×
〈
φa

g1 |Qa

∣∣∣φa
g0

〉
(75)
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The symmetry of the Raman tensor with respect to inter-
change of á and â, present in the FFR theory, has been
lost in the NR theory due to the difference in the energy
denominators for the third and fourth terms in Eq. (73)
compared to the first and second terms, or the second
term of Eq. (75) compared with the first. This asym-
metry should occur whenever resonance is sufficiently
close that the difference in the resonance felt by the inci-
dent and scattered radiation is numerically significant.
Note that the deviation from symmetry can be expressed
as a correction term, for the third and fourth terms in
Eq. (70) by writing the photon frequency for these terms
as

ω0
eg ± (ω0 − ωa) = ω0

eg ± ω0(1 − ωa/ω0) (76)

Ignoring the correction term ωa/ω0 restores the FFR
theory. It is clear that the FFR theory becomes an ever
better approximation as the vibrational frequency
decreases and becomes exact in the limit of zero vibra-
tional frequency or Rayleigh scattering.

7 Near resonance theory of ROA

Given the asymmetry in the Raman polarizability tensor
with respect to interchange of α and β, the antisymmet-

ric tensor invariant,
[(
ααβ

)a
g1,g0

]A
, which is zero in the

FFR approximation, now becomes non-zero in the NR
approximation with a magnitude on the order of the
ratio of the vibrational frequency to that of the excit-
ing radiation as illustrated in Eq. (73). In analogy to
Eq. (72), the expressions for the Raman optical activity
tensors in the NR approximation are given by

(
G̃αβ

)Qa

g1,g0 = 1
h̄

∑
e �=g

(〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣m̂β

∣∣g〉0
ω0

eg − ω0

+
〈
g
∣∣m̂β

∣∣e〉0
〈
e
∣∣µ̂α

∣∣g〉Qa
0

ω0
eg + ω0

+
〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣m̂β

∣∣g〉Qa
0

ω0
eg − ωs

+
〈
g
∣∣m̂β

∣∣e〉Qa
0

〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg + ωs

) 〈
φa

g1|Qa|φa
g0

〉
(77)

(
G̃αβ

)Qa

g1,g0 = 1
h̄

∑
e �=g

(〈
g
∣∣m̂α

∣∣e〉Qa
0

〈
e
∣∣µ̂β

∣∣g〉0
ω0

eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉0
〈
e
∣∣m̂α

∣∣g〉Qa
0

ω0
eg + ω0

+
〈
g
∣∣m̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Qa
0

ω0
eg − ωs

+
〈
g
∣∣µ̂β

∣∣e〉Qa
0

〈
e
∣∣m̂α

∣∣g〉

ω0
eg + ωs

) 〈
φa

g1|Qa|φa
g0

〉
(78)

(
Ãα,βγ

)Qa

g1,g0 = 1
h̄

∑
e �=g

⎛
⎜⎝
〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣∣	̂βγ

∣∣∣g
〉
0

ω0
eg − ω0

+
〈
g
∣∣∣	̂βγ

∣∣∣e
〉
0

〈
e
∣∣µ̂α

∣∣g〉Qa
0

ω0
eg + ω0

+
〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣∣	̂βγ

∣∣∣g
〉Qa

0

ω0
eg − ωs

+
〈
g
∣∣∣	̂βγ

∣∣∣e
〉Qa

0

〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg + ωs

⎞
⎟⎠
〈
φa

g1|Qa|φa
g0

〉

(79)

( ˜Aα,βγ

)Qa

g1,g0
= 1

h̄

∑
e �=g

⎛
⎜⎝

〈
g
∣∣∣	̂βγ

∣∣∣e
〉Qa

0

〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg − ω0

+
〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣∣	̂βγ

∣∣∣g
〉Qa

0

ω0
eg + ω0

+
〈
g
∣∣∣	̂βγ

∣∣∣e
〉
0

〈
e
∣∣µ̂α

∣∣g〉Qa
0

ω0
eg − ωs

+
〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣∣	̂βγ

∣∣∣g
〉
0

ω0
eg + ωs

⎞
⎟⎠
〈
φa

g1|Qa|φa
g0

〉

(80)

Using the Hermitian properties of the matrix elements,
as before, and combining terms over common denomi-
nators, we can write

(
G̃αβ

)Qa

g1,g0
= 1

h̄

∑
e �=g

⎡
⎢⎣ ω0(
ω0

eg

)2 − ω2
0

× Im
[〈

g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣m̂β

∣∣g〉0
]

+ ωs(
ω0

eg

)2 − ω2
s

Im
[〈

g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣m̂β

∣∣g〉Qa
0

]
⎤
⎥⎦

×
〈
φa

g1|Qa|φa
g0

〉
(81)



48 Theor Chem Account (2008) 119:39–55

(
G ′
αβ

)Qa

g1,g0
= 1

h̄

∑
e �=g

⎡
⎢⎣ ω0(
ω0

eg

)2 − ω2
0

× Im
[〈

g
∣∣m̂α

∣∣e〉Qa
0

〈
e
∣∣µ̂β

∣∣g〉0
]

+ ωs(
ω0

eg

)2 − ω2
s

Im
[〈

g
∣∣m̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Qa
0

]
⎤
⎥⎦

×
〈
φa

g1|Qa|φa
g0

〉
(82)

(
Aα,βγ

)Qa
g1,g0 = 1

h̄

∑
e �=g

⎡
⎢⎣

ω0
eg(

ω0
eg

)2 − ω2
0

× Re
[〈

g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣∣	̂βγ

∣∣∣g
〉
0

]

+ ω0
eg(

ω0
eg

)2 − ω2
s

Re

[〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣∣	̂βγ

∣∣∣g
〉Qa

0

]
⎤
⎥⎦

×
〈
φa

g1|Qa|φa
g0

〉
(83)

(
Aα,βγ

)Qa
g1,g0 = 1

h̄

∑
e �=g

⎡
⎢⎣

ω0
eg(

ω0
eg

)2 − ω2
0

× Re

[〈
g
∣∣∣	̂βγ

∣∣∣e
〉Qa

0

〈
e
∣∣µ̂α

∣∣g〉0
]

+ ω0
eg(

ω0
eg

)2 − ω2
s

Re
[〈

g
∣∣∣	̂βγ

∣∣∣e
〉
0

〈
e
∣∣µ̂α

∣∣g〉Qa
0

]
⎤
⎥⎦

×
〈
φa

g1|Qa|φa
g0

〉
(84)

For these expressions, the presence of ωs instead of
ω0, as found in the FFR approximation, prevents the
relationships that equate the Roman ROA tensors, or
their invariants, to within a sign of the corresponding
script ROA tensors, or their invariants, as in Eqs. (45)
or (46). This permits differences, for example, between
ICP-ROA and SCP-ROA even for the cases of sym-
metric invariants. Adding the antisymmetric invariants
further differentiates these two forms of ROA.

8 Complete adiabatic theory of Raman scattering and
ROA

We describe here a second way in which the FFR theory
breaks down and gives rise to asymmetry in the Raman
tensor. If the theory of Raman scattering and ROA
is extended beyond Born-Oppenheimer approximation,
there is also a loss of symmetry in the Raman tensor, as

has been pointed out previously [20,21], and differences
in the Roman and script ROA tensors and invariants.
We begin by writing the complete adiabatic (CA) elec-
tronic wavefunction as a function of both the nuclear
position and the nuclear velocity as [22,23]

ψ̃CA
g (Qa, Pa) = ψg,0 +

(
∂ψ̃g

∂Qa

)

0,0

Qa +
(
∂ψ̃g

∂Pa

)

0,0

Pa + · · ·

(85)

where in general the CA electronic wavefunction is com-
plex and the double zero subscript refers to evaluation
of the wavefunction at the equilibrium nuclear posi-
tion and zero nuclear velocity. For convenience, we have
chosen normal coordinates and conjugate momenta to
express the nuclear dependence, but Cartesian coordi-
nates could be used if desired. In terms of vibronic cou-
pling, the CA wavefunction can be written as

ψ̃CA
g (Qa, Pa) = ψg,0 +

∑
s�=g

Ca
sg,0ψs,0

(
Qa + iPa/ω

0
sg

)
+ · · ·

(86)

Where the vibronic coupling matrix element is defined
as

Ca
sg,0 = 〈

ψs,0
∣∣(∂ψg/∂Qa

)
0

〉
(87)

From this equation it is clear that the nuclear posi-
tion dependence represented by Qa is real whereas the
nuclear velocity dependence represented by Pa is pure
imaginary. Substitution of Eq. (85) in Eq. (33) for the
polarizability in the FFR approximation and using the
notation

〈
g
∣∣µ̂α

∣∣e〉Pa
0 =

(
∂
〈
g
∣∣µ̂α

∣∣e〉

∂Pa

)

0

=
〈(
∂�̃g

∂Pa

)

0

∣∣µ̂α
∣∣�e,0

〉 〈
�g,0

∣∣ µ̂α
∣∣
(
∂�̃e

∂Pa

)

0

〉

(88)

gives the full normal coordinate dependence of the
polarizability tensor as

(
α̃αβ

)Qa,Pa
g1,g0 = 1

h̄

∑
e �=g

⎧⎨
⎩

⎛
⎝
〈
g
∣∣µ̂α

∣∣e〉Qa
0
〈
e
∣∣µ̂β

∣∣g〉0
ω0

eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉0
〈
e
∣∣µ̂α

∣∣g〉Qa
0

ω0
eg + ω0

+
〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Qa
0

ω0
eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉Qa
0
〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg + ω0

⎞
⎠〈
φa

g1 |Qa

∣∣∣φa
g0

〉

+
⎛
⎝
〈
g
∣∣µ̂α

∣∣e〉Pa
0
〈
e
∣∣µ̂β

∣∣g〉0
ω0

eg − ω0
+
〈
g
∣∣µ̂β

∣∣e〉0
〈
e
∣∣µ̂α

∣∣g〉Pa
0

ω0
eg + ω0
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+
〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Pa
0

ω0
eg − ω0

+
〈
g
∣∣µ̂β

∣∣e〉Pa
0
〈
e
∣∣µ̂α

∣∣g〉0
ω0

eg + ω0

⎞
⎠

〈
φa

g1 |Pa

∣∣∣φa
g0

〉
⎫
⎬
⎭ (89)

In view of Eq. (86), relationships of the form
〈
g
∣∣µ̂β

∣∣e〉P∗
a

0

〈
e
∣∣µ̂α

∣∣g〉∗0 = − 〈
g
∣∣µ̂α

∣∣e〉0
〈
e
∣∣µ̂β

∣∣g〉Pa
0 (90)

Similar terms can be collected over a common denomi-
nator as

(
α̃αβ

)a
g1,g0 = 2

h̄

∑
e

ω0
eg Re

[〈
g
∣∣µ̂α

∣∣e〉Qa
0

〈
e
∣∣µ̂β

∣∣g〉0 + 〈
g
∣∣µ̂β

∣∣e〉Qa
0

〈
e
∣∣µ̂α

∣∣g〉0
]

(
ω0

eg

)2 − ω2
0

×
〈
φa

g1 |Qa

∣∣∣φa
g0

〉

+ 2
h̄

∑
e

ω0 Im
[〈

g
∣∣µ̂α

∣∣e〉Pa
0

〈
e
∣∣µ̂β

∣∣g〉0 + 〈
g
∣∣µ̂β

∣∣e〉Pa
0

〈
e
∣∣µ̂α

∣∣g〉0
]

(
ω0

eg

)2 − ω2
0

×
〈
φa

g1 |Pa

∣∣∣φa
g0

〉
(91)

The expression that depends on Qa is symmetric with
respect to interchange of subscripts α and β and can
be deduced from FFR limit of the NR expression for
the polarizability in Eq. (75). By contrast the expression
that depends on P ais antisymmetric with respect to α
and β interchange. In order to assess the relative magni-
tude of these terms, we substitute into Eq. (89) the CA
electronic wavefunctions into the derivatives of the elec-
tronic matrix elements using the notation of Eqs. (68)
and (88) and then (85) and (86) to obtain

(
α̃αβ

)Qa,Pa
g1,g0 = 1

h̄

∑
e �=g

{(
Ca

sg,0

(
µ̂α
)

se,0

(
µ̂β
)

eg,0

ω0
eg − ω0

+
Ca

sg,0

(
µ̂β
)

se,0

(
µ̂α
)

eg,0

ω0
eg + ω0

)

×
〈
φg1

∣∣∣
(

Qa − iPa/ω
0
sg

)∣∣∣φg0

〉

+
((
µ̂α
)

gs,0Ca
se,0

(
µ̂β
)

eg,0

ω0
eg − ω0

+
(
µ̂β
)

gs,0Ca
se,0

(
µ̂α
)

eg,0

ω0
eg + ω0

)

×
〈
φg1

∣∣∣
(

Qa + iPa/ω
0
se

)∣∣∣φg0

〉

+
((
µ̂α
)

ge,0Ca
se,0

(
µ̂β
)

sg,0

ω0
eg − ω0

+
(
µ̂β
)

ge,0Ca
se,0

(
µ̂α
)

sg,0

ω0
eg + ω0

)

×
〈
φg1

∣∣∣
(

Qa − iPa/ω
0
se

)∣∣∣φg0

〉

+
((
µ̂α
)

ge,0

(
µ̂β
)

es,0Ca
sg,0

ω0
eg − ω0

+
(
µ̂β
)

ge,0

(
µ̂α
)

es,0Ca
sg,0

ω0
eg + ω0

)

〈
φg1

∣∣∣
(

Qa + iPa/ω
0
sg

)∣∣∣φg0

〉
(92)

Using symmetry relations that hold for the electric
dipole matrix elements of the form

(
µ̂β
)

ge,0

(
µ̂α
)

es,0Ca
sg,0 = Ca

sg,0
(
µ̂α
)

se,0

(
µ̂β
)

eg,0 (93)

we can combine terms over a common denominator and
separate those terms that depend on Qa from those that
depend on Pa which yields

(
α̃αβ

)Qa ,Pa
g1,g0 = 1

h̄

∑
s,e �=g

⎧⎪⎨
⎪⎩
ω0

eg

⎡
⎢⎣

Ca
sg,0

(
µ̂α
)

se,0

(
µ̂β
)

eg,0 + Ca
sg,0

(
µ̂β
)

se,0

(
µ̂α
)

eg,0(
ω0

eg

)2 − ω2
0

+
(
µ̂α
)

gs,0Ca
se,0

(
µ̂β
)

eg,0 + (
µ̂β
)

gs,0Ca
se,0

(
µ̂α
)

eg,0(
ω0

eg

)2 − ω2
0

⎤
⎥⎦

× 〈
φg1 |Qa

∣∣φg0
〉

− iω0

⎡
⎢⎢⎣

Ca
sg,0

(
µ̂α
)

se,0

(
µ̂β
)

eg,0 − Ca
sg,0

(
µ̂β
)

se,0

(
µ̂α
)

eg,0

ω0
sg

[(
ω0

eg

)2 − ω2
0

]

−
(
µ̂α
)

gs,0Ca
se,0

(
µ̂β
)

eg,0 − (
µ̂β
)

gs,0Ca
se,0

(
µ̂α
)

eg,0

ω0
se

[(
ω0

eg

)2 − ω2
0

]

⎤
⎥⎥⎦

× 〈
φg1 |Pa

∣∣φg0
〉 }

(94)

Again, we find from Eq. (94) that the terms with Qa-
dependence are symmetric with αβ interchange and
those with Pa-dependence are correspondingly antisym-
metric. These expressions can be related to earlier defi-
nitions of the symmetric and antisymmetric parts of the
Raman polarizability and well as its real and imaginary
parts by noting that

(
α̃αβ

)Qa,Pa
g1,g0 =

[(
α̃αβ

)Qa
g1,g0

]S +
[(
α̃αβ

)Pa
g1,g0

]A

= (
ααβ

)Qa
g1,g0 − i

(
α′
αβ

)Pa

g1,g0
(95)

where in the FFR approximation the separation of the
real and imaginary parts of

(
α̃αβ

)Qa,Pa
g1,g0 coincides with

separation the symmetric and antisymmetric parts,
respectively. The relative magnitudes of these terms is
most easily seen from Eq. (92) where the electronic
matrix elements and frequency denominators are the
same and differences can be expressed within the
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vibrational matrix elements as〈
φa

g1

∣∣∣
(

Qa ± iPa/ω
0
sg

) ∣∣∣φa
g0

〉

=
(

1 ∓ ωa/ω
0
sg

) 〈
φa

g1 |Qa

∣∣∣φa
g0

〉
〈
φa

g1

∣∣∣
(

Qa ± iPa/ω
0
se

) ∣∣∣φa
g0

〉

=
(

1 ∓ ωa/ω
0
se

) 〈
φa

g1 |Qa

∣∣∣φa
g0

〉

(96)

It can be seen that inclusion of the nuclear velocity
dependence of the normal coordinates provides a cor-
rection on the order of the ratio of the vibrational energy
to that of energy differences between coupled elec-
tronic states. This correction is similar in magnitude,
but slightly different in form to the correction provided
by the NR level of approximation, which depends on
the ratio of a vibrational energy to the incident photon
energy as shown in Eq. (76). Similar relationships to
those in Eqs. (89)–(95) can be written for the Raman
optical activity tensors which can be summarized as fol-
lows
(

G̃αβ

)Qa,Pa

g1,g0
= (

Gαβ

)Pa
g1,g0 − i

(
G′
αβ

)Qa

g1,g0
= −(Gβα

)Pa
g1,g0

+i
(
G ′
βα

)Qa

g1,g0
= −

(
G̃βα

)Qa,Pa

g1,g0
(97)

(
Ãα,βγ

)Qa,Pa

g1,g0
= (

Aα,βγ
)Qa

g1,g0 − i
(

A′
α,βγ

)Pa

g1,g0

= (
Aα,βγ

)Qa
g1,g0 − i

(
A ′
α,βγ

)Pa

g1,g0

=
( ˜Aα,βγ

)Qa,Pa

g1,g0
(98)

and which give rise to the following relationships
[(

G̃αβ

)Qa,Pa

g1,g0

]S

= 1
2

[(
G̃αβ

)Qa,Pa

g1,g0
+
(

G̃βα

)Qa,Pa

g1,g0

]

= −
[(

G̃αβ
)Qa,Pa

g1,g0

]S

(99)

[(
G̃αβ

)Qa,Pa

g1,g0

]A

= 1
2

[(
G̃αβ

)Qa,Pa

g1,g0
−
(

G̃βα

)Qa,Pa

g1,g0

]

=
[(

G̃αβ
)Qa,Pa

g1,g0

]A

(100)

[
εaγ δ

(
Ãγ ,δβ

)Qa,Pa

g1,g0

]S

= 1
2

[
εaγ δ

(
Ãγ ,δβ

)Qa,Pa

g1,g0

+εβγ δ
(

Ãγ ,δα

)Qa,Pa

g1,g0

]

=
[
εaγ δ

( ˜Aγ ,δβ

)Qa,Pa

g1,g0

]S

(101)

[
εaγ δ

(
Ãγ ,δβ

)Qa,Pa

g1,g0

]A

= 1
2

[
εaγ δ

(
Ãγ ,δβ

)Qa,Pa

g1,g0

− εβγ δ
(

Ãγ ,δα

)Qa,Pa

g1,g0

]

=
[
εaγ δ

( ˜Aγ ,δβ

)Qa,Pa

g1,g0

]A

(102)

From these last relationships, it can be seen that in
the FFR approximation, even though nuclear velocity
dependence through Pa leads to antisymmetric contri-
butions to the ordinary Raman polarizability, it does
not disturb the relationship between Roman and script
forms of the ROA tensor invariants. The antisymmetric
ROA invariants are present in the FFR approximation
even if only Qa dependence is retained, but they do not
enter any of the expressions for ROA intensity because
the anti-symmetric part of Raman polarizability is zero.

9 Imaginary linewidth terms

As a final level of approximation, we consider the effects
of the imaginary electronic linewidth terms i�e that were
last included in Eq. (32). Retaining these terms in the
FFR expression in Eq. (33) gives,

(
α̃αβ

)a
g1,g0 =

〈
φa

g1

∣∣∣ 1
h̄

∑
e

[〈
g
∣∣µ̂α

∣∣e〉〈e∣∣µ̂β
∣∣g〉0

ω0
eg − (ω0 + i�e)

+
〈
g
∣∣µ̂β

∣∣e〉〈e∣∣µ̂α
∣∣g〉

ω0
eg + (ω0 + i�e)

] ∣∣∣φa
g1

〉
(103)

where we have grouped the imaginary terms with the
incident photon frequency to emphasize that we have
merely added imaginary character to the frequency
denominator without changing any of the symmetry
relations that exist in the FFR theory in Eq. (33). In view
of these fundamental symmetry relations, the introduc-
tion of imaginary linewidth terms has been expressed in
terms of lineshape function f and g, where [3]

(
α̃αβ

)a
g1,g0 = Re

[(
α̃αβ

)a
g1,g0

]
+ i Im

[(
α̃αβ

)a
g1,g0

]

= (
α̃αβ

)a
g1,g0(f + ig) (104)

where we have used the unprimed FFR expression for
the Raman tensor

(
α̃αβ

)a
g1,g0 and
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(
α̃αβ

)a
g1,g0(f ) = 2

h̄

〈
φa

g1

∣∣∣
∑
e �=g

⎡
⎢⎢⎢⎣
ω0

eg

[(
ω0

eg

)2 − ω2
0 + �2

e

]
Re

[〈
g
∣∣µ̂α

∣∣e〉〈e∣∣µ̂β
∣∣g〉0

]

[(
ω0

eg

)2 − ω2
0 + �2

e

]2

+ 4ω2
0�

2
e

⎤
⎥⎥⎥⎦
∣∣∣φa

g1

〉

(105)

(
α̃αβ

)a
g1,g0(g) = 2

h̄

〈
φa

g1

∣∣∣
∑
e �=g

⎡
⎢⎢⎢⎣

2ω0
egω0�e Re

[〈
g
∣∣µ̂α

∣∣e〉〈e∣∣µ̂β
∣∣g〉0

]
[(
ω0

eg

)2 − ω2
0 + �2

e

]2

+ 4ω2
0�

2
e

⎤
⎥⎥⎥⎦
∣∣∣φa

g1

〉
(106)

When �e = 0, Eq. (105) reduces to Eq. (35), Eq. (106)
becomes zero, and one has again the FFR theory. The
inclusion of lineshape factors does not lead to any change
in the number of Raman or ROA invariants, any dis-
crimination in the theory between ICP and SCP ROA,
or any intensity predicted for DCPII ROA.

10 NR Theory with CA and imaginary linewidth
contributions

For completeness, we write here the expression of the
Raman polarizability with the CA and imaginary line-
shape contributions included in the NR theory. Analo-
gous terms can be written for the ROA tensors.

(
α̃αβ

)Qa,Pa
g1,g0 = 1

h̄
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11 Discussion

Before discussing the NR theoretical formalism, we pro-
vide some further comments regarding the scope of the
NR theory and rationale for the assumption of equiva-
lence of vibronic structure of the most important excited
states compared to that of the ground state. For simplic-
ity, the NR theory in this first presentation is limited
to non-generate ground electronic states, an assumption
for most molecules lacking a metal coordination cen-
ter. The simplifying assumption of equivalence of vibra-
tional detail in excited electronic states has been invoked
to explain the origin of excitation profiles arising from
resonance Raman spectra, as well as the structure flu-
orescence spectra, in countless publications involving
solution-state samples where vibronic detail involves
features arising only from the 0–0 and 0–1 interstate
vibrational transitions using the same theory presented
in this paper.

In the years following the first measurements of SCP
ROA [6,24] and DCPI ROA [8], experiments were car-
ried out to compare the ICP and SCP forms of ROA
[16] and the difference between unpolarized ICP and
DCPI ROA in backscattering, thereby isolating for the
first time DCPII ROA [9]. These measurements showed
that a chiral molecule devoid of multiple bonds or het-
eroatoms, such as cis- or trans-pinane, showed identical
ICP and SCP ROA and zero DCPII ROA to within
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the noise limit of the measurement. On the other hand,
perceptible ICP/SCP ROA differences and non-zero
DCPII ROA of more than several percent in some bands
were seen in the sister molecule á-pinene, which has
one double bond. Even larger DCPII ROA spectra were
observed in verbenone, which has a conjuagated double
bond and carbonyl group, and quinidine, with aromatic
character and extensive functional group structure. A
correlation between the onset of UV visible absorption
and the degree of departure from the FFR approxima-
tion was noted, although none of these molecules was
in direct resonance with the laser excitation line 514 nm.
Clearly, it is possible to see the breakdown of the FFR
approximation for a molecule at so-called transparent
frequencies with just a single double bond well removed,
by more that 25,000 cm−1 from direct resonance. This
raises the question, where and by what mechanism does
the FFR approximation break down?

In this paper, we describe simple theoretical
departures from the standard FFR approximation. The
simplest of these is what we call the NR approxima-
tion of Raman and ROA intensities. The theory is an
intermediate level between the GU theory and the FFR
theory. The FFR theory is characterized by use of an
adiabatic wavefunction and removal of vibronic detail
from the energy denominators of the Raman polarizabil-
ity and optical activity tensors followed by summation
to closure over the excited vibrational state wavefunc-
tions. By contrast, in the NR approximation, the vibron-
ic detail retained using the assumption that the excited
vibrational state wavefunctions are the same as those
of the ground state and that the summation over the
excited vibrational state wavefunctions can be carried
out using harmonic oscillator selection rules. The NR
expressions for the Raman polarizability and optical
activity tensors depend explicitly on both the incident
and scattered radiation frequencies. This dual-photon
frequency dependence represents the fact that in the NR
approximation the molecule has a pre-resonance depen-
dence on both the e0 and e1 vibronic levels the excited
electronic states. This dual dependence yields non-zero
antisymmetric tensors and invariants for the Raman
polarizability and differences between the Roman and
script ROA tensors and invariants. As the Raman scat-
tered light approaches Rayleigh scattering in the limit of
zero vibrational frequency, the NR theory approaches
the FFR theory. By simply changing all scattered fre-
quencies, ωs = ω0 − ωa, to the incident laser frequency
ω0 in the NR theory, the FFR theory is obtained; the
Raman tensor becomes symmetric; and the distinction
between the Roman and script tensors is lost. In the
FFR limit, the number of Raman invariants changes
from 3 to 2 and the number of ROA invariants changes

from 10 and 3, which leads to equality of ICP-ROA and
SCP-ROA and zero DCPII-ROA. Even though the NR
theory is very simple in form it still retains the same
number of Raman and ROA invariant expressions as
that found in the full GU theory.

The next simplest departure from the basic FFR
theory is to introduce the CA electronic wavefunction
that carries nuclear velocity dependence as well as
nuclear position dependence. We are able to show that
this modification of the FFR theory does not provide
a basis for distinguishing the Roman from the script
font ROA tensors and invariants, and hence distinguish-
ing ICP and SCP ROA or explaining the observations
DCPII ROA. This extension does, however, lead to anti-
symmetric components in the Raman tensor and a non-
zero antisymmetric invariant. This in turn allows the
antisymmetric invariants associated with the magnetic-
dipole and electric quadrupole optical activity tensors to
contribute to ROA intensities, even though they make
no contribution in the FFR approximation. As a result,
the number of Raman invariants goes from 2 in the FFR
theory to 3 in the CA-FFR theory, but the number of
ROA invariant changes only from 3 to 5, rather that the
full 3–10 as found in the GU and NR theories of ROA.
In the simple FFR theory, without CA contributions,
the ROA tensors contain non-zero antisymmetric parts
because of the presence of two kinds of operators, in
any ROA tensor, but all antisymmetric ROA invariants
vanish because each such invariant contains the product
of an antisymmetric component of the Raman polar-
izability tensor with an antisymmetric component of an
ROA tensor, and in the FFR approximation, the Raman
tensor is pure symmetric.

A third mechanism of departure from the simple FFR
theory is to include the imaginary damping terms in
the energy denominators. Imaginary contributions are
thereby introduced into the FFR polarizability and opti-
cal activity tensors, but as shown above, this merely adds
lineshape factors to these tensors and does not change
their underlying symmetry properties. The imaginary
lineshape terms do add accuracy to these tensors as res-
onance with an excited electronic state is approached,
but by their addition is not responsible for any discrim-
ination between ICP and SCP ROA or the appearance
of non-zero DCPII ROA.

It should be clear that all three breakdowns of the
FFR, or any combination thereof, can be implemented
simultaneously if desired as illustrated in Eq. (107). All
three mechanisms carry a similar magnitude of correc-
tion to the FFR theory, namely the ratio of a vibrational
energy on the order of 1000 cm−1 to the electronic ener-
gies or the laser photon energy. It appears however, that
the corrections from the CA theory enter with opposing



Theor Chem Account (2008) 119:39–55 53

signs for the nuclear velocity dependence and may there-
fore be diminished in importance relative to corrections
from the NR theory.

If one is to explain the appearance of DCPII ROA at
transparent laser frequencies, differences between the
Roman and script ROA tensors and invariants must be
present in the underlying theory. Before this work, the
only option was invoking the full GU theory of ROA.
We have demonstrated here that NR theory provides a
relatively simple explanation. Further we have ruled out
the first order inclusion of nuclear velocity dependence
and imaginary linewidth terms as sources of breakdown
of the FFR theory of ROA that would lead to differ-
ences between the Roman and script ROA tensors, and
hence differences between ICP and SCP ROA as well
as the appearance of DCPII ROA.

The NR theory of Raman and ROA is both simple and
more accurate than the FFR resonance theory. Even if
the vibrational states of the most important low-energy
excited electronic state are not that close to those of
the ground state, due for example to shallower poten-
tial surfaces, shifted equilibrium positions or Dushinsky
rotations that mix ground state normal modes, the NR
theory is more accurate than the FFR theory since it
makes no attempt to describe the vibrational structure
of the excited electronic states and makes no distinction
between the incident and scattered radiation frequen-
cies.

Another hallmark of the superiority of the NR the-
ory over the FFR is that it is straightforward to show
that the FFR does not obey time reversal symmetry for
ordinary Raman scattering. The time-reversed process
of a Stokes Raman scattering event with incident radia-
tion at ω0 and scattered radiation at ω0 − ωa is an anti-
Stokes Raman scattering event with incident radiation
at ω0 − ωa and scattered radiation at ω0 . In the FFR
approximation, the Raman tensor depends only on ω0
for the Stokes scattering and only on ω0 −ωa for the cor-
responding time-reversed anti-Stokes process and are
clearly inequivalent. By contrast in the NR theory, the
time-reversed anti-Stokes scattering tensor correspond-
ing to the Stokes tensor in Eq. (73) is
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where the subscripts α and β corresponding to the scat-
tered and incident light have been interchanged and the
initial and final vibrational wavefunctions have been
interchanged. Using the Hermitian properties of the
electronic and vibrational matrix elements, Eq. (108)
can be brought into exact coincidence with Eq. (73)
thus proving its time reversal equivalence. This prop-
erty has been demonstrated previously at the GU level
of ROA theory by Barron and Escribano [25] where
they also demonstrated similar time-reversal relations
between the Roman and script ROA tensors, for exam-

ple
(

G̃αβ

)Qa

g1,g0
= −

(
G̃βα

)Qa

g1,g0
, that also hold exactly in

the NR theory. The reason for the equality of Roman
and time-reversed script tensors (and vice versa for the
equality of script and time-reversed Roman tensors)
is that the time order of the magnetic-dipole moment
interaction relative to electric-dipole moment interac-
tion is reversed as they are in the definitions of the
Roman and script tensors. Similarly, the time reversal
of an ICP-ROA Stokes process is an SCP-ROA anti-
Stokes process.

The time reversal properties of the Raman tensor
have been considered previously for both non-resonance
[20] and resonance Raman intensities [21]. The for-
malities of a the time-reversal operator were applied
to the Raman tensor to obtain results similar to those
obtained here, but in both cases, the time reversal oper-
ations focused on the Raman polarizability devoid of
explicit excited-state vibronic structure. The treatment
of the effects of the breakdown of the Born-Oppenhei-
mer approximation are consistent with our results, as
noted above, but the NR theory represents a formula-
tion of the Raman tensor and its breakdown in symmetry
not considered previously.

Finally, we address the practical aspect of implement-
ing NR theory as an improvement relative to the FFR
theory for quantum mechanical computations of Raman
and ROA intensities. Inspection of Eq. (73) shows that
the NR theory can be constructed, for a particular scat-
tering frequency from half a FFR calculation at ω0,
namely the two terms involving the derivative with
respect to scattered radiation and a second FFR cal-
culation at ω0 − ωa for the terms involving the deriva-
tive of the matrix element involving the incident light.
The two terms in Eq. (73) that depend on ω0 are iden-
tical to a standard FFR calculation. If derivatives for
the second two terms that depend on ω0 − ωa are first
carried out with respect to Cartesian coordinates one
could calculate the results of the FFR theory at sev-
eral appropriately spaced values of ω0 − ωa across the
Raman spectrum. The variation of these terms with scat-
tering frequency should be smooth, and it is likely that
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a functional dependence of the desired terms on the
frequency of the scattered radiation can be obtained.
Interpolated values of the terms could then be used for
the transformation to the required Raman or ROA ten-
sor derivatives with respect to a particular normal coor-
dinate for the scattered frequency ω0 − ωa . Numerical
studies could then be carried out to find the value of the
incident laser frequency, as resonance is approached,
where the results of NR theory depart significantly from
the FFR theory for pre-resonance Raman and ROA
intensities and as a result where ICP ROA becomes dis-
tinguishable from SCP ROA, and where DCPII ROA
has experimentally observable intensities. One obvious
prediction of the NR theory is that these effects will be
more noticeable at higher vibrational frequencies than
they are at low vibrational frequencies. In other words,
the FFR theory should break down and give way to the
NR theory first at higher vibrational frequencies.

In looking for the breakdown of the FFR theory,
searching for the effects in ROA noted above is much
more sensitive that looking for differences in the Raman
spectra at two different frequencies for example, because
Raman intensities are typically not measured as absolute
cross-sections, but more commonly as relative intensi-
ties because the varying sensitivities and efficiencies of
Raman instruments at different frequencies must be first
determined and removed from the measured spectra.
However, the breakdown in the FFR can be in observed
in ROA at a single laser frequency if for example DCPII
ROA can be measured or if ICP and SCP ROA can be
measured for the same sample.

Recently, sum frequency vibrational spectroscopy
(SFVS) for chiral liquids has been considered where
it is found that the anti-symmetric Raman tensor plays
a determining role [26]. Conclusions analogous to those
found here are that the contribution of anti-symmetric
Raman tensor can be observed well before direct res-
onance with a single electronic state is encountered. It
appears the SFVS and VOA both have sensitivities to
the frequency regime between far-from-resonance and
strong resonance.

12 Conclusions and summary

A new level of the theory of Raman scattering and ROA
is described that lies between the GU and the FFR the-
ories. The NR theory retains some vibronic detail of the
excited electronic states of the molecule that is removed
in the FFR approximation and is critical to retaining the
full richness of the theoretical description of the GU
theory of ROA. In particular, the NR theory retains dis-
crimination between the ICP and SCP forms of ROA

and non-zero intensities for DCPII ROA which have
been observed experimentally in molecules that are still
removed from direct resonance between the laser exci-
tation and excited electronic state. There are various lev-
els of theoretical approximation between the GU theory
and the NR theory that correspond to: (1) removal of
vibronic detail from the frequency denominators and
summation to closure over the excited-state vibrational
wavefunctions, (2) removal of imaginary lineshape terms
from the frequency denominators of the Raman and
ROA tensors, (3) retention of excited-state vibronic sub-
levels through implementation of the approximations of
the NR theory, (4) inclusion of nuclear velocity depen-
dence of the electronic wavefunctions through the use of
CA wavefunctions. The first approximation is the most
critical in the departure from the GU theory to FFR
theory, and at this level it is reasonable not include the
imaginary lineshape terms. Approximation 3) yields the
NR resonance theory that can be used with or without
approximations 1), 2) and 4). The NR theory provides
an improved description of the frequency dependence
of Raman and ROA intensities in the near-resonance
regime as resonance is approached. When resonance
with one or two states is approached closely, theoreti-
cal descriptions such as the single-electronic-state (SES)
theory of ROA or modifications thereof with improved
excited-state detail and imaginary lineshape factors will
be necessary. The form of the NR theory of Raman and
ROA is only slightly more complex than that of the
FFR theory and could be implemented for computa-
tional analysis to study the relative importance of the
various levels of theory described in this paper.

We conclude this section with further considerations
on the approximation invoked in the NR theory the
vibrational structure of the excited electronic states is
the same as ground electronic vibrational structure. The
most important point to consider is that for each excited
electronic state, a complete sum over all excited state
vibrational wavefunctions is performed in the NR
approximation. In general, there will be a Dushinsky
rotation of the manifold of vibrational normal modes
in the exited state relative to the normal modes of the
ground state. Both sets of vibrational state wavefunc-
tions span the same Hilbert space as long as the mol-
ecule remains intact. Even if the overlap of the nth
vibrational state wavefunction in the ground state has
a small overlap with the corresponding nth vibrational
state wavefunction of the excited state, the sum of all
overlaps of the ground vibrational state wavefunction
with all excited state vibrational state wavefunctions is
still unity, since any particular ground state vibrational
wavefunction can be expanded precisely and completely
in terms of the set of all vibrational wavefunctions of any
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particular excited electronic state. If significant over-
lap with other excited state vibrational wavefunctions
occurs, then the error in the NR theory is not one of
overlap but of vibrational frequency. The error in the
NR approximation is therefore that the frequency for
a particular vibronic state used is not that of the corre-
sponding ground state but rather is some average over
all the necessary overlaps of excited state wavefunctions.
This is not a bad approximation, since the lowest-lying
excited states have electronic structures that are rela-
tively mildly distorted compared the ground state and
corresponding vibrational modes in the excited state can
be recognized relative to the ground state counterparts.
Higher excited states with more dramatically distorted
electronic structure are suppressed in importance due
to their larger energy denominators. On the other hand,
the FFR approximation assumes that the frequencies of
all the excited-state vibrational modes of the molecule
are zero! This is much worse than the simplest attempt
to take into account what these effective vibrational fre-
quencies actually are, and in the limit where the value
of the vibrational frequency is immaterial compared to
the gap between the photon energy and the excited state
resonance, the FFR and NR theories become identical.
Further, as noted already in the manuscript, the FFR
theory does not obey time reversal symmetry, while the
NR theory does. The NR theory is the simplest approach
to a time-reversal consistent theory.

One might further be concerned that electronic tran-
sitions between the ground state and non-bonding orbi-
tals or anti-bonding orbitals would be excluded from
an approximation that assumes the vibrational transi-
tions of the excited states are the same as those of
the ground state. All that is required in the NR the-
ory is that there is substantial vibrational-state over-
lap between the ground and excited-state vibrational
manifolds. The only transitions that seriously dimin-
ish this approximation are transitions that cause dis-
sociation of the molecule into two or more fragments
and those high-energy transitions would be reduced in
importance by the energy denominator in the expres-
sions for the Raman and ROA tensors. The summation
over all excited electronic states is carried out for both

the FFR and NR theories of Raman and ROA. Details of
the nature the excited vibrational states are not included
the final equations of either of these formulations, but
the NR theory gives a result that is more realistic and
accurate as resonance is approached. Very far from res-
onance both theories give the same result despite any
concerns about the validity of the approximation used
to arrive at the NR theory.
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